Repairhints

6210/6250
 NPE-3/NHM-3 HDa13/S 893

GENERAL

-How to use this document

Put the QUICK REPAIR layouts behind this manual.
Now you are able to follow these specifications with graphical layouts and it is easier for you to find the components and measuring points.

-Component characteristics:

Some components contain important data.
Several described steps are only practicable if you are able to reflash/realign the phone and/or rewrite IMEI/SIMlock in certain cases. Please pay attention to separate notes.

-Underfills, broken balls, $\mu \mathrm{BGA}$

It is not possible to change underfilled components. The trial will damage PCB surely. All replaceable $\mu \mathrm{BGA}$-components must be renewed after removing. Reflow is not allowed.
Check soldering points, remove oxidated solderings (broken balls) carefully by enclosing few new solder before placing new components.
μ BGA must be soldered only with NMP approved μ BGA-rework machines (e.g. Zevac/OK International). Use only recommended Fluxtype and an appropriate amount of it.

-PCB handling

Only use appropriate cleaning materials, don`t use scratching or rubbing tools. Clean PCB carefully after every rework and take great pains over the keyboard area. Don't make any loose wiring connections anywhere.
If it is necessary to change any item located under the metal shields, remove the shield first, don't cut partially or bend it. Take care: Corners of the lids are sharp, insuries are possible !
Shields and screws must be renewed after removal.

-Realign after repair

Characteristics of replacement parts are different.
To prevent additional faults after repair (eg. low standby time, loosing network etc...) it is necessary to retune phone values after repair.

INTRODUCTION

IMPORTANT:

This document is intended for use by authorized NOKIA service centers only.

The purpose of this document is to provide some further service information for NOKIA 6210/6250 phones. It contains a lot of collected tips and hints to find failures and repair solutions easily. It also will give support to the inexperienced technicians.
Saving process time and improving the repair quality is the aim of using this document.
We have build it up based on fault symptoms (listed in "Contents") followed by detailed description for further analysis.
It is to be used additionally to the service manual and other service information like Service Bulletins, for that reason it doesn't contain any circuit descriptions or schematics.

All measurements are made using following equipment:

Nokia repair SW : WinTesla Version 6.43

DLL version : 311.03.00
Nokia Module Jig : JBT-13 / MJS-23
Digital multimeter : Fluke 73
Oscilloscope : Hitachi V-1565; Fluke PM 3380A/B
Spectrum Analyzer : Advantest R3162 with an analogue probe
RF-Generator / : Rohde \&t Schwarz CMU 200
GSM Tester

While every endeavour has been made to ensure the accuracy of this document, some errors may exist. If any errors are found by the reader, NOKIA should be notified in writing, using following procedure :

Please state:

Title of the Document + Issue Number/Date of publication.
Page(s) and/or Figure(s) in error.

Please send to:

Nokia GmbH
Service \&t Analysis Center Europe
Meesmannstr. 103
D-44807 Bochum / Germany
Email: training.sace@nokia.comCONFIDENTIAL4 (29)

Service \&t Analysis Center Europe SACE CC Training Group

Contents

GENERAL 2
INTRODUCTION 3
GENERAL TUNING INFORMATION 5
USER INTERFACE FAILURES 11
SIMCARD FAILURES 13
CHARGING PROBLEMS 14
CONTACT SERVICE 15
PHONE DOES NOT SWITCH ON 17
LOW STANDBY/OPERATION MODE TIME 18
FLASH UPDATE NOT POSSIBLE 18
NO SERVICE PROBLEMS 19
SIGNAL CHARTS 25
FREQUENCY LIST 26
SPECIAL INFORMATION FOR NHM-3 27
CHANGE HISTORY 29

Service \&t Analysis Center Europe
 SACE CC Training Group

HDa-13/S 893
Repairhints
Introduction
Version 1.2 Approved

GENERAL TUNING INFORMATION - DIFFERENCES TO EARLIER PHONES

Energy management calibration information

If it is necessary to realign, it is imperative to follow the instructions displayed in the pop-up windows! As soon as you take an other order as given from WinTesla, the alignment will be failed or will stop and you must begin once more.

Follow these instructions as shown in pictures and your energy management calibration will work.

First step: (Charge current)

EM Charge current calibration

1 - Disconnect the phone from all cables and remove service battery.
2 - Connect a well charged standard battery to phone and turn phone on
3 - Reconnect service cable and DC cable to the phone.

Second step: (Charge current)

EM Charge current calibration

1- Disconnect the phone from all cables and remove the standard battery. 2 - Reconnect the service battery to the phone.
3 - Reconnect service cable.

OK

If all of the measurements are 0 K , the values are now adjusted.
If one or more values failed, see charging problems on page \#14.

Service \&t Analysis Center Europe
SACE CC Training Group

HDa-13/S 893
Introduction
Repairhints

TX tuning

Has to be tuned in both bands, but only on middle channels :
CH38-897,6 MHz for EGSM and CH700-1747,8 MHz for PCN.
TX I/Q tuning has to be done for both bands.
Reference are always target- values given from WINTESLA.

RX calibration

RSSI (Radio / Received Signal Strength Indicator)

The "RX calibration" is used to determine gain at different gain-settings for front-end and Hagar and needs to be done in both bands, but the calibration only has to be started once, it will automatically proceed to the PCN band after EGSM.

Note: If the frequency in your Wintesla is different from 946.2671 MHz ,you will have to close Wintesla and add or edit these lines in your tesla.ini file:
[NPE-3_TUNING]
RXChanneIGSM $=56$
TXChanneIGSM =38
Restart Wintesla and redo RX Calibration.

Note if the low level in your Wintesla is different from $\mathbf{- 8 5 d B m}$, you will have to close Wintesla and add these lines in your tesla.ini file:
[NPE-3LEVELS]
RSSILow $=-85$
RSSIHigh $=-55$
Restart Wintesla and redo RX Calibration

Note : Check if AGC-values are in ascending order (10dBm/step, exception: In PCN mode gainstep 2 to 3 is only $\sim 5 \mathrm{dBm}$)

AM suppression tuning

Tune's four Hagar internal resistors of RX demodulator.
Purpose is to minimize the effect of any kind of AM interference to RX performance.
Tuning is automatic but it needs AM-modulated signal to phones` antenna input and has to be done for both bands.

NOTE:
Set the generator to the level or frequency shown in your wintesla window!

NOTE : WINTESLA WILL USE CH.56/700+10MHz INSTEAD OF ALL MANUAL SETTINGS IN TESLA.INI!

Use these settings:

EGSM	PCN
Fmod $=1 \mathrm{kHz}$	Fmod=1 kHz
Mod depth=83\%	Mod depth=83\%
$P=-23 d B m$	$P=-26 d B m$
$F=956.2 \mathrm{MHz}$	$F=1852.800 \mathrm{MHz}$

$$
\begin{aligned}
& \text { AM supression results should be in a range for: } \\
& \text { EGSM }-86 \mathrm{dBm} \text { to }-130 \mathrm{dBm} \text {, PCN }-95 \mathrm{dBm} \text { to } \\
& -130 \mathrm{dBm}
\end{aligned}
$$

RX filter calibration results for $A D$ values should be in a range between 0 and 1023.

CONFIDENTIAL
8 (29)
HDa-13/S 893
Introduction
Date 2001-03-16

Service \&t Analysis Center Europe
SACE CC Training Group

Description of Signals \& Voltages

The cause of this list are some new named signals/voltages in opposite to former names which are used in this document (where to measure) \&t for a better understanding in addition to the service manual.

Startup sequence/CCONT section

PWRON/WDDISX (J102/R401) Always high level, only pulled down as long as powerkey is pressed

PURX (J101)

CCONTCSX (J100)
CCONTINT

CHARG_CTRL (J114/C171)

SLEEPCLK (J112/C113)
SYNTHPWR (J317)

VB (J103/C105)
VCORE (C155)
VBB (J108/C147)
VCOBBA (J109/C254)
VBATTIR (L121)
VBATTRF (L122)
VBATTUI (L120)
VREF (J117/C143)
VREF_RX (R510)
VSYN_1 (J106/C130)
VSYN_2 (C133)
VRX (J104/C136)
VTX (J107/C142)
VXO (J105/C141)
VCP (J110/C157)
V_IN (F101)
VPP (C349)

VIRDA (C139)
RAM_BCK (C135)
BATTIO (V120)

RFC (J601) Reference Frequency Clock. High stability clock signal for the digital circuits inBaseband

VCXOPWR/SLEEPX (J331/J333/R305) Control line from MAD to CCONT. Controls the sleep-mode by turning on/off regulators needed during normal/sleep
Always high level, only pulled down as long as powerkey is pressed.
Power-Up-Reset signal from CCONT. When the voltages are stable, this line is on high level allowing the MAD to run (Masterreset).
Chip select for the CCONT. Used when the MAD wants to access the CCONT on the serial bus (the serial bus is shared with the display) GENSIO-bus.
Interrupt from the CCONT to the MAD; for example: from the Real Time Clock, when a charger is connected or when an intelligent battery powers the phone up
Output to the charger, when using 3 -wire charging. The duty cycle of this 32 Hz signal switches the output current of the ACP-9 charger. (13MHz)
32 kHz clock generated in CCONT RTC. Used by MAD during sleepmode Control line from MAD to CCONT. Turns on/off 3 voltage regulators for RF

Battery voltage
Digital baseband supply for the MAD core, 1.7-1.9V
Digital baseband supply, 2.7V
Analog baseband supply, 2.7V (used for audio)
Battery voltage for supplying IRDA, VIBRA and BUZZER
Battery voltage for the Power amplifiers (RF)
Battery voltage for supplying LED's
1.5 V reference voltage ($+-1,5 \%$) generated by CCONT

Reference voltage for HAGAR, generated by COBBA
Supply voltage for SHF VCO
Supply voltage for digital and analog circuits in HAGAR (VLO,VPRE,VBB, VF_RX)
Supply voltage for HAGAR part of the RX chain
Supply voltage for the TX chain in HAGAR
Supply voltage for the VCTCXO and VDIG in HAGAR
$4,9 \mathrm{~V}$ supply voltage for PLL charge pump HAGAR
Charger input
12 V input for fast flashing. In normal use, this line of the Flash is used for write protecting the flash, and is then controlled by MAD with a possible overrule from a voltage detection circuit. So if the battery is removed, the voltage detector disabled writing to the flash Regulator (2.7 V), that turns the Infrared device and buffers on/off
Backup-supply to SRAM. When the phone is turned off, the SRAM gets power from the RTC-battery, so that data is not lost
Signal used for turning ON an intelligent battery from the phone

CONFIDENTIAL
HDa-13/S 893
Introduction
Date 2001-03-16

Service \&t Analysis Center Europe SACE CC Training Group

RF part

AFC (R604)
COBBACLK (J200)
HAGARRESET (J500/N501)
DET (V800)
SCLK (J502/J506)
SDATA (J503/J507)
SLE (J501/J505)
RXI, RXQ (R509)
GSM_RX (Z700)
GSM_TX (L800)
TXP (R512)
TXC (R518)
VPCTRL_G (V803)
TXVDET (C531)
TXBUF_G (C807)
TXBUF_P (C829)
LNA_G (C706)
LNA_P (C700)
LNAB_G (R708)
TXI_0, TXI_180 (R513)
TXQ_0, TXQ_180 (R516)
TXVGSM (R910/N800)
TXVPCN (R911/N800)
OUTM_G_TX (L802)
OUTP_G_TX (L802)
OUTM_P_TX (L804)
OUTP_P_TX (L804)
INM_GSM_RX (L704)
INP_GSM_RX (L704)
INM_LO (T600)
INP_LO (T600)
INP_PCN_RX (L703)
INM_PCN_RX (L703)
OSC_DIV/TOUT (C614)
OSC_IN (G602)
OUT_CP (C605)
PCS_RX (Z701)
PCS_TX (L800)

Automatic Frequency Control - analog control signal for 26 MHz VCTCXO fine tuning 13 MHz clock from MAD to COBBA - used for syncronized serial communication between COBBA and MAD
Reset signal from MAD to HAGAR
Detector signal between powerdetector and HAGAR
Clock for HAGAR serial programming (26 MHz)
Data for HAGAR serial programming
Serial Latch Enable for HAGAR serial programming (formerly titled as SENA)
The RX baseband signals (after downconversion)
EGSM RX signal between RX/TX switch and ${ }^{\text {st }}$ EGSM SAW
EGSM TX signal between dual-coupler and RX/TX switch
Transmitter power enable - used for timing of the power loop, Enables the operation
amplifier in HAGAR
Transmitter power control signal, that controls the level of the output power and the shape of the burst
Control line for PA output power
Supply voltage for the RF power detector circuit
Supply voltage for EGSM TX buffer
Supply voltage for PCN TX buffer
EGSM LNA supply voltage, front-end gain on/off
PCN LNA supply voltage, front-end gain on/off
BIAS for both LNA's, front-end gain on/off
Differential In-phase TX signals to the IQ-modulator
Differential quadrature-phase TX signals to the IO-modulator
Selects GSM Tx mode in PA and RX/TX Switch
Selects PCN Tx mode in PA and RX/TX Switch
Balanced EGSM TX signal between HAGAR and EGSM TX balun
Balanced EGSM TX signal between HAGAR and EGSM TX balun
Balanced PCN TX signal between HAGAR and PCN TX balun
Balanced PCN TX signal between HAGAR and PCN TX balun
Balanced EGSM RX signal between EGSM RX balun and RF input of HAGAR
Balanced EGSM RX signal between EGSM RX balun and RF input of HAGAR
Balanced VCO signal between VCO balun and VCO input of HAGAR
Balanced VCO signal between VCO balun and VCO input of HAGAR
Balanced PCN RX signal between PCN RX balun and RF input of HAGAR
Balanced PCN RX signal between PCN RX balun and RF input of HAGAR
Reference divider output (13 MHz) -- RFClock
Reference frequency input from ref oscillator
Output of the PLL charge pump
PCN RX signal between RX/TX switch and $1^{\text {st }}$ PCN SAW
PCN TX signal between dual-coupler and RX/TX switch

Service ©t Analysis Center Europe SACE CC Training Group

HDa-13/S 893
Repairhints
Introduction
Date 2001-03-16

Digital/programming part

MBUS (J113/R172)	Bidirectional serial bus between MAD and accessory - during flashing, clock signal is received on this line
MBUS1 (V170)	Same as above, but on the "dirty" side of the filter
FBUS(1:0) (V171)	FastBus. Consisting of FBUS_RX and FBUS_TX signals. Used for IRDA and accessory
	communication. During flashing, the data is transferred on these lines
FBUS_RX(J332/R306)	Receive line from the MAD's point of view
FBUS_TX(J331/R305)	Transmit line from the MAD's point of view

User Interface part

XEAR (L201)	Audio output when using carkit or headset
XMIC (L201)	Audio input when using carkit or headset
MICN (L200)	Negative side of the microphone
MICP (L200)	Positive side of the microphone
PD2 (R201)	Signal for muting microphone in headset, controlled by MAD
BUZZER (R410)	PWM-signal from MAD, controls the buzzer
LCDCD (J328)	Signal for controlling if the display is to receive data or control information on the serial bus
LCDEN (J451)	Chip enable signal to the display, informing that data on the serial bus is to the display driver
LCDRSTX(R430)	Reset signal from MAD to display driver
LIGHT (R427)	Signal from MAD, that turns on the LED's for keyboard and backlight
ROW(4:0) (V450)	Keyboard matrix scan lines
COL(4:0) (V450)	Keyboard matrix scan lines
CARDDET (C127)	Used for detecting removal of the battery. When the battery is removed, this signal goes high before the power is lost, giving the MAD time to power down the SIM-card
SIMIF(4:0) (J300)	Serial bus for transferring SIM-data between MAD and CCONT
HEADDET (C211)	Used for detection of which accessory has been connected to the system connector by measuring the voltage on XMIC. Connected to A/D-converter in CCONT, and I/0-pin on MAD. Data can also be transferred, for example - between MAD and DLR3-cable
HOOKDET (C212)	For detecting when the push-button on the headset is pressed
DLR3 (V221)	When the DLR3-cable is detected, this signal controls a switch, which gives power to the cable
SGND (L201)	Return line for microphone and earpice when a headset is connected to the phone. When the DLR3-cable is connected, it changes to a power supply line to the cable, supplying 2.7 V

HDa-13/S 893
Introduction
Date 2001-03-16

Repairhints
Version 1.2 Approved

USER INTERFACE FAILURES

Display failure

Check mechanical appearance of H 400 and C451.
Check contact pads on PCB - clean also if necessary
Check VBB 2,7V at C452
Check if Vout $7,6 \mathrm{~V} / 70 \mathrm{mV}$ pp at $\mathbf{C 4 5 1}$ (noise $<100 \mathrm{mV}$), if noise is higher, C 451 may be broken.
Change LCD unit if failure persists - probably MAD D301 faulty.
If the LCD shows too much contrast and / or LCD flickers, check if C451 is broken.
If there are vertical or horizontal lines missing, LCD unit electrical defect.

Keypad malfunktion

Check if domesheet contacts are dirty, clean PCB (keypads) if necessary
Check mechanical appearance of domesheet (LCD unit) itself.
Check resistance of ROW and COL lines between the keys (0 Ohm)
Change LCD unit.
If keypad is still malfunctioned - probably MAD D301 faulty.
If keypad crackles when pressing keys, change keypad.

Backlight failure

First check mechanical condition and position of baseband shield, check for shorts, etc.
Check VBATTUI 3,6V at L120
Check VBATTUI 3,6V at R424
Check voltage at V430 (LCD lights) 3,6V and at LED's V420 - V423
Check voltage at V431 (Key lights) 3,6V and at LED's V424 - V429
Check voltage at R427 (LIGHT line) - if this fails, MAD D301 or PCB faulty
Note: Different LEDs for LCD (brighter) and keypad backlight.
Clock time problems.
Clock time has to be corrected in short periods.
Check amplitude and frequency of sleepclock oscillator at J112 / C113 should be 3,2Vpp squarewave at $32,768 \mathrm{kHz}$.
If not ok, change B110 and check parts around oscillator :(R110, R111, R112, R113, C110, C111, C112, C113).

Clock time is lost after removing battery.

First try to charge RTC battery, by connecting battery to the phone for app. 10 minutes.
If fault remains, check contact springs of battery or change RTC battery (LCD unit). Check VBACK 3.2V at RTC battery G100 If fault persists, probably CCONT N102 or CHAPS N100 faulty.

32 kHz before and after C113.

Name Date Time	$\begin{aligned} & =\text { Active Channel } 1 \\ & =20.12 .00 \\ & =11: 17: 17 \end{aligned}$	
Y Scale YAt 50\%	$\begin{aligned} & =200 \\ & =\quad 0,00 \end{aligned}$	mV/Div mV
XScale XAt 0\% X Size	$\begin{aligned} & =10 \\ & = \\ & =512 \end{aligned}$	$\begin{aligned} & \mu s / D i v \\ & \mu s \\ & (512) \end{aligned}$
Maximum Minimum	$\begin{aligned} 1 & =448,00 \\ & =-456,25 \end{aligned}$	

Name Date Time	$\begin{aligned} & =\text { Active Channel 1 } \\ & =19.12 .00 \\ & =12: 48: 44 \end{aligned}$
Y Scale YAt 50\%	$\begin{aligned} & =500 \mathrm{~m} / / \mathrm{Div} \\ & 6=0,00 \mathrm{mV} \end{aligned}$
$\begin{aligned} & \text { X Scale } \\ & \text { XAt 0\% } \\ & \text { XSize } \end{aligned}$	$\begin{array}{ll} =10 & \mu s / D i v \\ =0 & \mu s \\ =512 & (512) \end{array}$
Maximum Minimum	$\begin{aligned} n= & 1,441 \mathrm{~V} \\ & =1,497 \mathrm{~V} \end{aligned}$

CONFIDENTIAL
12 （29）
Service ©t Analysis Center Europe
HDa－13／S 893
Repairhints
SACE CC Training Group
Introduction
Version 1．2 Approved

Vibra failure

Check mechanical appearance of M400
Check VBATTIR 3，6V at L121
Check VBATTIR 3，6V at V440
Check vibra signal at L401．If not ok check VIBRA signal at R444
If signal is ok at R444 change V441，if signal fails，
MAD D301 is probably faulty，or a disconnection between MAD and R444 in VIBRA line is the reason


```
Name =Active Channel1
Oate =19.12.00
YScale = 500 mV/Div
YAt 50% = 0,00 mV
Y Scale = 10 \mus/Div
```



```
Maximum= 1,277V
Maximum= 1,277\textrm{V}
```


Buzzer failure

Check mechanical condition of buzzer B400
Check VBATTIR 3，6V at L121
Check buzzer signal at R410
Check buzzer signal in and out at V410
Change buzzer B400 if all of the above works

00 BUZZER at V411												
400，00		111	T1		\pm	T	11		171	$\begin{aligned} & \text { Name } \\ & \text { Date } \\ & \text { Time } \end{aligned}$	＝Active Channel 1 $=19.12 .00$ $=07: 22: 27$	
300，00					主							
200，00	H－mer				Naser					Y Scale	$=100$	mv／Div
										YAt 50%	$=0.00$	mV
100．00										\times Scale	$=200$	$\mu s / D i v$
mV 0，00					＋					$\begin{aligned} & \text { XAt } 0 \% \\ & \times \text { Size } \end{aligned}$	$\begin{aligned} & =-36 \\ & =491 \end{aligned}$	$\begin{aligned} & \text { (5s } \\ & \text { (512) } \end{aligned}$
－100，00			－		三		－			Maximum	$=231.88$	
－100，00					生					Minimum	$=-240,50$	
－200，00					－							
－300，00					＝							
					三							
－400，00				－	いいいい	\pm	U1	ш	山			
	－36 $\mu \mathrm{s}$				$200 \mu s / D i v$							

CONFIDENTIAL
13 (29)
HDa-13/S 893
Introduction
Date 2001-03-16

Repairhints
Version 1.2 Approved

SIMcard failures

SIMcard not accepted

Use Wintesla to open normal mode/quick/RF info window - compare shown SIMlock data with the listed entries of the respective productcode (see SIMlock list).
If shown SIMlock data is the same as in the list - Status is ok und must be set so!
Probably MSIN data field is closed to special IMSI number range, it only can be opened by operator (refer to general Service Bulletin 065).

If SIMlock data is not the same as in SIMlock list or somehow corrupted, SIMlock-data must be rewritten with the Nokia-security password.

If SIMlock is corrected or inactive but fault remains - N240 is faulty, or there are probably broken solderings under COBBA change N240 - realign RX / TX values and rewrite SIMlock data and flash the phone after this again.

"Insert SIMcard" appears in Display

Check X160, if bent or soiled - change if necessary
Check BSI A/D values (ok range 340-350)
Check V160: pin1 - DATA_0, pin3 - VSIM, pin4 - SIMCLK, pin5 - SIMRST_0
Check also R160, C160, C161, C162
Check resistance of SIMlines to GND - change V160, C163, C164 if necessary, probably broken solderings under CCONT N102 Change CCONT N102 and run energy management calibration, if fault persists - probably MAD D301 or PCB faulty.

SIMcard Signals

SIMCLK

Name Date Time	=Active Channel 1 $=07.12 .00$ = 07:26:58
Y Scale YAt 50%	$\begin{aligned} & =1 \quad \mathrm{~V} / \mathrm{Div} \\ & \%=0,0 \mathrm{mV} \end{aligned}$
X Scale XAt 0\% X Size	$\begin{array}{ll} =100 & \mathrm{~ns} / \mathrm{Div} \\ =0 & \mathrm{~ns} \\ =512 & (512) \end{array}$
Maximum Minimum	$\begin{aligned} n= & 1,752 \mathrm{~V} \\ & =1,512 \mathrm{~V} \end{aligned}$

-13 es
5 raOH

Name Date Time	=Active Channel 1 $=07.12 .00$ $=07: 35: 54$
Y Scale $=$ YAt $50 \%=$	$\begin{aligned} & =500 \mathrm{~m}^{\mathrm{V} / \mathrm{Div}} \\ & =1,565 \mathrm{~V} \end{aligned}$
X Scale XAt 0\% X Size	$\begin{array}{ll} =500 & \mathrm{~ms} / D \mathrm{Div} \\ =-1 & \mathrm{~s} \\ =512 & (512) \end{array}$
Maximum = Minimum =	$\begin{aligned} & =\quad 3,068 \mathrm{~V} \\ & =\quad 35,00 \mathrm{mV} \end{aligned}$

DATA 0

CONFIDENTIAL
14 (29)
Service ©t Analysis Center Europe
HDa-13/S 893
Repairhints
SACE CC Training Group
Introduction
Version 1.2 Approved

CHARGING PROBLEMS

At first try an energy management calibration; either to define the defective area, or the phone works well after calibration. (See page \#5)

"NOT CHARGING" appears on display

If calibration failed - check possible failure message:
Battery temperature failed: Check X120, X121, R122 / R123, R124, V120, change N102 if necessary.
Battery size failed: Check X121, X120, R120 / R121, change N102 if necessary.
Battery voltage failed: \quad Check L123 / R105 / C104 / C105, change N102 if necessary
Charge current failed: Check R106, change N100 and / or N102.
Charge voltage failed: Check VCHARGE at voltage devider R102 / R103, if ok - change N102,
if not ok - check X001, R101, F101, L101, change N100 if necessary.
X120 / X121 battery connector, X001 system connector.
Check mechanical condition of connectors - change if necessary.
V_IN line short-circuited to GND
Check resistance of V_IN line at F101 to GND (50 kOhm), if resistance is not ok - remove L101 and check again.
If resistance is ok now - C101 / C102 or N100 should be the reason, if resistance is still not ok - R101 faulty.

CCONT / N102 faulty

Change CCONT N102 if any A/D (calibration) value, is out of limit and DC voltage is ok.
If DC voltages are not ok, check corresponding voltage dividers and battery connectors X120 / X121, always realign RX/TX and AD values after changing CCONT N102.

Nothing happens if charger is connected
F101 faulty
Check resistance of F101 (0 Ohm).
Check voltage at R103 $>0,4 \mathrm{~V}$ if charger is connected. If not ok $(<0,4 \mathrm{~V})$ - check / change X120,X121, F101, R101, R102/R103, if ok - change N100 and / or N102.

Energy management calibration.

Calibration has to be done always if any part in charging circuit has been replaced.
Try calibration, if charging process stops too early or doesn't start and if message "NOT CHARGING" appears on Display.

(Also see "General tuning informations")

CONFIDENTIAL
15 (29)
Service ©t Analysis Center Europe
HDa-13/S 893
Introduction
SACE CC Training Group
Date 2001-03-16

CONTACT SERVICE

CONTACT SERVICE PROBLEMS

This fault means that the phone software is able to run and thus the watchdog of CCONT N102 can be served. Selftest functions run when power is switched on and program is executed from FLASH If any selftest fails, - "CONTACT SERVICE" appears in Display.
Note: Always try SW-update to solve the problem or locate the error - in most of the cases phones are ok after update.
Possible failures:

MCU ROM Checksum failed :

Try to flash the phone. If not ok after flashing - change FLASH D311 if you are authorized to rewrite IMEI and SIMlock data, if failure persists after changing D311, MAD D301 defect which is not changeable.

CCONT Interface failed :

Probably broken solderings under CCONT N102
If not ok after rework of CCONT, probably MAD D301 or PCB faulty. Run energy management calibration after changing CCONT NOTE: For Energy management calibration see also general tuning information page!

COBBA parallel/serial failed

Check VBB 2,7V at C147, VCOBBA 2,7V at C254 \&t COBBACLK at J200
If all ok - change COBBA N240
If the failure persists after changing COBBA - probably MAD D301 or PCB faulty.

DSP Alive failed

In most of all DSP alive selftest failures MAD D301 is faulty, which is not changeable.

EEPROM tune checksum / security checksum failed

Use Wintesla to check if phonedata like IMEI, product data or PSN are corrupted.
If phone data is ok, try to reset the phone. If phone data is not ok or fault remains after reset, FLASH D311 is faulty.

RTC Battery failed

First try to charge RTC battery by switching on the phone for app. 10 minutes
If fault remains, check contact springs of battery.
In some cases it is necessary to change CCONT N102.

CONFIDENTIAL
HDa-13/S 893
Introduction
Date 2001-03-16

17 (29)
Repairhints
Version 1.2 Approved

Service \&t Analysis Center Europe SACE CC Training Group

PHONE DOES NOT SWITCH ON

First check always current consumption: off state $0-2,3 \mathrm{~mA}$, sleep mode $\mathbf{2 , 3 - 4 m A}$.
If too high - see section "low standby / operation mode time".
Disable watchdog if phone switches off after 2 or 3 seconds.
Check connectors X001/X120/X121 - change if bent or soiled.
Check VB 3,6V at J103/C105 - if not ok, check/change L123.
Check if PWRON at R401/J102 drops to OV while pressing powerswitch, if not ok - check/change S402, R401.
Check $32,768 \mathrm{kHz}$ at $\mathrm{J} 112 / \mathrm{C} 113,3 \mathrm{Vpp}$ squarewave - (if it is difficult to measure squarewave, because of Basebandshield, check $32,768 \mathrm{kHz}$ at the other side of $\mathrm{C} 113,900 \mathrm{mVpp}$ sinewave).
If not ok, check/change components around B110, (R110-R113 Ct C110-C113) and/or change CCONT N102 if necessary.
Check VCORE at C155-1,7V - if not ok, change CCONT N102.
Check VBB 2,7V at J108/C147, VXO 2,7V at J105/C141, VREF 1,5V (+-1,5\%) at J117/C144 -if not ok, check resistance of lines to GND and/or change CCONT N102 if necessary.
Check SLEEPX/VCXOPWR 2,7V at J333/J331 - if not ok, MAD is faulty in all probability - swap the phone, because MAD D301 is not changeable.
Check PURX 2,7V at J101 after pressing powerswitch - if not ok, change CCONT N102.
Check 13 MHz Clk frequency (RFC) at C613, if not ok, check values around 26 MHz oscillator $\mathbf{G 6 0 2}$ / V600
Change HAGAR N500 if necessary.
Try to flash the phone - if not ok, see section "FLASH update not possible".
Note:
It is nessesary to realign all RX/TX values after changing HAGAR N500 and run energy management calibration after changing CCONT N102.
For Energy managemant calibration see also general tuning information page!
$32,687 \mathrm{kHz}$ before and after C613.

0 ns

```
Name =Active Channel 1
```

Name =Active Channel 1
Mate =28.11.00
Mate =28.11.00
Y Scale =500 mV/Div
Y Scale =500 mV/Div
YAt 50%= 0,00 mV
YAt 50%= 0,00 mV
Y
Y
XABO% = 5.,00 \mus
XABO% = 5.,00 \mus
Maximum= 1,493V
Maximum= 1,493V
Maximumm = - 1.443V

```
Maximumm = - 1.443V
```

```
Name =Active Channel1
```

Name =Active Channel1
Date =18.12.00
Date =18.12.00
Time = 12:13:10
Time = 12:13:10
Y Scale = 200 mV/Div
Y Scale = 200 mV/Div
YAt50%= 0,00 mV
YAt50%= 0,00 mV
XScale = 20 ns/Div
XScale = 20 ns/Div
XAt0% = 0 ns
XAt0% = 0 ns
XSize = 512 (512)
XSize = 512 (512)
Maximum= 279,63 mV
Maximum= 279,63 mV
Minimum = -287,00 mV

```
Minimum = -287,00 mV
```


LOW STANDBY / OPERATION MODE TIME

Off state current $>\mathbf{0 - 2 , 3 m A}$.

lift L122 (VBATRF) - check current consumption, if ok - N800 faulty in all probability, if current is still too high after changing N800. check / change C814, C815, C817.
Lift L123 (VB) - check current consumption - if too high,

VB line faulty

In most cases is CCONT N102 the reason. If fault persists after changing CCONT, it is also possible, that capacitor(s) in VB line is/are faulty ($\mathbf{C 1 0 5}, \mathbf{C 1 2 2}, \mathbf{C 1 2 3}, \ldots$). Check all these components lifting one after the other, with repeated current testing. If fault persists, probably one of the μ BGA / CSP's and / or PCB should be the reason.

Sleep mode current $>2,3-4 \mathrm{~mA}$

Check resistance of all voltage output lines of CCONT N102 to GND
Check component(s) in corresponding line(s) if resistance is not ok
If resistance of voltage lines (from CCONT N102) are ok, but sleep mode current is still too high - change CCONT N102.
Check charging circuit, run energy management calibration.
If calibration fails - continue with section "Not charging"
Align RX / TX values. If calibration fails - continue with section "RX / TX faults".
Note:
Standby time also depends on network side and users handling, like lights on/off, VIBRA- / WAP activities, games etc.

FLASH UPDATE NOT POSSIBLE

Check if fault code from prommer is one of the following:

MCU boot failure, serial clock/data line failure:

Connect "watchdog disable" WDDISX R401 to GND.
Check VBB 2,7V at J108/C147 and VXO 2,7V at J105 / C141, if not ok - continue with section "PHONE DOES NOT SWITCH ON"
Check SLEEPX 2,7V at J333 - if not ok - MAD D301 faulty in all probability
Check PURX 2,7V at J101 - if not ok change CCONT N102
Check 13 MHz Clk frequency at C613, approximately 800 mV pp, if not ok, check values around 26 MHz oscillator $\mathbf{G 6 0 2}$ / V600, change HAGAR N500 if necessary
Check resistance of MBUS / FBUS lines (J113 / J331 / J332) to GND, also check R172, V170, V171,R305, R306 and check X001.
If update still not possible - swap the phone, MAD D301 or PCB should be the reason.

Algorithm code fail, alias ID missing:

Update FPS4 box with the latest flash device list and try to update again, if fault remains, check values at MAD D301.
If ok, change FLASH D311

External RAM failure:

Check values at MAD D301, if ok - SRAM D310 faulty and/or change FLASH D311 if necessary.
See chapter "PHONE DOES NOT SWITCH ON"

Note:

It is necessary to run energy management calibration after changing CCONT N102!
For Energy managemant calibration see also general tuning information page (\#5).

NO SERVICE PROBLEMS

No RX EGSM

Use Wintesla to set phone in following mode: Initialise / Local mode / Testing / RF Controls / Gain step value >2 / active unit RXburstmode / Channel $56(\mathbf{9 4 6}, 2 \mathrm{MHz})$. Set Generator to same frequency, $\mathbf{- 4 0 d B m}$.

Check 26MHz reference oscillator frequency at G602, 800mVpp/frequency deviation $<100 \mathrm{~Hz}$
Check $946,2 \mathrm{MHz}$ at C912, if not ok, check/ change Z900, X900.
Check $946,2 \mathrm{MHz}$ at $\mathbf{L 7 0 0}$, if not ok, check/change $\mathbf{Z 7 0 0}$.
Check $946,2 \mathrm{MHz}$ at V700 in Ct out, if not ok, check LNA values: VLNAB_G 2,7V at V700, pin 8 and LNA_G 0,7V at pin4, change HAGAR N500 if necessary.
Check 946,2 MHz at L704 - if not ok, check/change Z703, R702, T700.
Check RXIQ signals at R509, if not ok, check supply values at HAGAR N500: 2,7V at C513 (VXO), C501 (VRX), C503(VSYN_2) and N501 input 4,9V (VCP). If one or more of these fails, change N102.
Check SDATA at J503/J507, SCLK at J502/J506 and SLE at J501/J505, if not ok MAD D301 faulty
Check VREF $(1,5 \mathrm{~V})$ at R514 / VREF_RX $(1,2 \mathrm{~V})$ at R510, if not ok, change N102.
Check frequency of SHF oscillator G600 if possible - refer to EGSM frequencies list.
If all values are ok but no RXIQ signals measurable at R509, HAGAR faulty, or there are probably broken solderings under N500. If signals at R509 ok, but still no RX calibration possible, check values at COBBA N240:
VBB at C256 $(2,7 \mathrm{~V})$ and VCOBBA at R245 $(2,7 \mathrm{~V})$, also check COBBACLK at J200.
If values ok - N240 faulty, or there are probably broken solderings under COBBA.

No RX PCN

Use Wintesla to set phone in following mode: Initialise / Local mode / Testing / RF Controls / Gain step value >2 / active unit RX burst / Channel $700(1842,8 \mathrm{MHz})$. Set Generator to same frequency, $\mathbf{- 4 0 d B m}$.

Check 26 MHz reference oscillator frequency at G602, $800 \mathrm{mVpp} /$ frequency deviation $<100 \mathrm{~Hz}$
Check $1842,8 \mathrm{MHz}$ at X900 and ANT pad of Z900 - change X900 if necessary.
Check $1842,8 \mathrm{MHz}$ at C913, if not ok, check solderings of Z900, change if necessary .
Check $1842,8 \mathrm{MHz}$ (PCS_RX) at C702 - if not ok, check/change Z701.
Check $1842,8 \mathrm{MHz}$ at C712 - if not ok check values of LNA: VLNAB_G $=2,7 \mathrm{~V}$ at V701, pin 8 (VC) and LNA_P = 0,7V at pin 4 (VCC) Change V701 if necessary.
Check 1842,8MHz at L703, If not ok, check/change Z702, T701
Check RXIQ signal at R509 - if not ok, check values at HAGAR N500: 2,7V at C513 (VXO), C501 (VRX), C503 (VSYN_2) and
N501 input 4.9V (VCP).
If one or more of these fails - change N102
Check SDATA at J503/J507, SCLK at J502/J506 and SLE at J501/J505, if not ok MAD D301 faulty.
Check VREF $(1,5 \mathrm{~V})$ at R514 / VREF_RX $(1,2 \mathrm{~V})$ at R510, if not ok, change N 102.
Check frequency of SHF oscillator G600 if possible - refer to EGSM frequencies list.
If there is no possibility to check frequency - check if oscillator works by measuring VCC at $\mathbf{C 6 0 1}(2,7 \mathrm{~V})$ and VC at C603, which varies between $0,7 \mathrm{~V}$ and $3,8 \mathrm{~V}$ (see EGSM list).
If VC is $4,8 \mathrm{~V}$, the oscillator doesn't work in all probability, also check T600 and R608.
If all values are ok but no RXIO signal is measurable at R509, N500 is faulty, or there are probably broken solderings under HAGAR.
If signal at R509 ok but still no RX calibration possible, check values at COBBA N240: VBB 2,7V at C256 and VCOBBA 2,7V at R245, also check COBBACLK at J200.
If values are ok, N240 faulty, or there are probably broken solderings under COBBA.
Note: After changing COBBA, HAGAR and/or CCONT it is necessary to realign all RX,TX -and AD values, and rewrite IMEI and SIMlock data (COBBACHANGE)

NO SERVICE PROBLEMS

EGSM/PCN no RX

NO SERVICE PROBLEMS / TX POWER

First of all: Try to calibrate RX / TX values to define the fault area, or phone works well after calibration

No or low TX power EGSM

Use Wintesla to set phone in following mode: Initialise / Local mode / Testing /RF Controls / active unit TX / Channel 38
($897,6 \mathrm{MHz}$).
Check 26MHz reference oscillator frequency at G602 $(800 \mathrm{mV}$ pp, frequency deviation $<100 \mathrm{~Hz}$)
CheckTXBUF_G at C807-2,7Vpp squarewave - see signal page \#27
Check TXIO signals at C525 / C526, refer to signals shown on page \#27.
If not ok, check values at COBBA N240 (see COBBA N240 chapter page \#24).
Check $897,6 \mathrm{MHz}$ at T800 pin 4 and 6. If not ok, check signals at HAGAR N500 (see HAGAR N500 chapter)
Check $897,6 \mathrm{MHz}$ at N800 pin 8 . If not ok,check / change parts like T800,V801, Z802, Z800.
Check $897,6 \mathrm{MHz}$ at $\mathbf{L 8 0 0}$ pin 1. If not ok, check values at N800.
Check $897,6 \mathrm{MHz}$ at X902 (Antenna pad). If not ok, check / change X900.
Check L800 in \&t out, check also signal at Z900 in ©t out and TXVGSM: 2,7Vpp squarewave at C910 (sets Z900 into TX-mode).

No or low Tx power PCN

Use Wintesla to set phone in following mode: Initialise / Local mode / Testing /RF Controls / active unit TX / Channel 700
($1747,8 \mathrm{MHz}$).
Check 26MHz reference oscillator frequency at G602 (800 mV pp, frequency deviation $<100 \mathrm{~Hz}$).
Check TXBUF_P at C829-2,7V squarewave - see signal page \#27
Check TXIO signals at C525 / C526, refer to signals shown on page \#27.
If not ok check values at COBBA N240 (see COBBA N240 chapter, page \#24)
Check $1747,8 \mathrm{MHz}$ at T840 pin 4 and 6 . If not ok check signals at HAGAR N500 (see HAGAR N500 chapter).
Check $1747,8 \mathrm{MHz}$ at N800 pin 8 . If not ok check / change parts like T840,V802, Z800.
Check $1747,8 \mathrm{MHz}$ at $\mathbf{L 8 0 0}$ pin 2. If not ok, check values at $\mathbf{N 8 0 0}$.
Check $1747,8 \mathrm{MHz}$ at X902 (Antenna pad). If not ok, check / change X900.
Check L800 in Ct out, check also signal at Z900 in Ct out and TXVPCN: 2,7Vpp squarewave at C911 (sets Z900 into TX-mode).

NO TX

CONFIDENTIAL
HDa-13/S 893
Introduction
Date 2001-03-16

23 (29)
Repairhints
Version 1.2 Approved

Service \&t Analysis Center Europe SACE CC Training Group

SHF OSCILLATOR PROBLEMS

This causes problems in EGSM and PCN mode (RX/TX).
If the phone has no service because of too low TX power (eg. approximately 5 dBm in the highest powerlevels) and / or there are strange A/D values in the RSSI measurements - check (if possible) the SHF frequency with a spectrum analyzer and /or the RX calibration A/D values (also see pictures below) if there might be something unusual like a cutted SHF oscillator frequency amplitude and / or the gain readings in RX calibration are lower as normal, - approximately about values of 10 to 20.

If this is the case, check the periphery - capacitors of SHF Oscillator G602 in VC circuit (C603, C604, C605)
Check their resistance to GND (approximately 3MOhm at R612 to GND in normal case / otherwise the value should be in lower kOhm range (around 10k):

Left picture shows a normal SHF frequency amplitude - right side in defect case

Left picture shows normal gain readings - right picture in defect case (RX Calibration):
RX Calibration

AFC information:	
AFC init value..............:	206
AFC	slope..................:
PSW	256
slope...................:	220
Nro	Gains (06)
30.22 1 40.22 2 50.22 3 59.22 4 69.22 5 78.94 6 88.81 7 98.88 8 108.66	

RX Calibration

AFC information:	
AFC init value..............:	104
AFC slope...................:	240
PSW	
slope..................:	235
Nro	Gains (06)
0	13.83
1	23.83
2	33.83
3	42.83
4	52.83
5	63.77
6	72.94
7	82.83
8	92.53

CONFIDENTIAL
24 (29)
Service \&t Analysis Center Europe
HDa-13/S 893
Introduction
Repairhints
SACE CC Training Group
Date 2001-03-16

COBBA / N240 faulty

Check VBB 2,7V at C256 and VCOBBA 2,7V at R245
Check 13MHz COBBACLK at J200, probably broken solderings under COBBA / N240.
Realign Rx / Tx values after rework of COBBA N240.

HAGAR / N500 faulty

Check voltages at HAGAR:

VXO	$2,7 \mathrm{~V}$ at C533
VCP	$4,7 \mathrm{~V}$ at N 501 (output)
VSYN_2	$2,7 \mathrm{~V}$ at C503
VRX	$2,7 \mathrm{~V}$ at C 501
VREF	$1,5 \mathrm{~V}$ at C 143

Check 26MHz reference oscillator frequency at G602:
800 mV pp - frequency deviation $<100 \mathrm{~Hz}$.
Check TXIQ signals at R513/C525 (TXI 0/180) and R516 / C526 (TXQ 0/180)
Check SDATA at J503/J507, SCLK at J502/J506 and SLE (SENA) at J501/J505 (refer to signals shown on page \#27)
Check TXC at C529 (diagram on page \#25)
Check TXP at R512, 3Vpp squarewave/ 217 Hz
Check frequency of SHF oscillator / G600 - refer to EGSM frequency list
If all values are ok but no TX - signal is measurable at T800, there are probably broken solderings under HAGAR, or N500 is faulty.

Note: After changing COBBA, HAGAR and/or CCONT it is necessary to realign all RX,TX -and AD values, and rewrite IMEI and SIMlock data (COBBACHANGE)

CONFIDENTIAL
HDa-13/S 893
Introduction
Date 2001-03-16

25 (29)
Repairhints
Version 1.2 Approved

Service \&t Analysis Center Europe SACE CC Training Group

SIGNAL CHARTS

Serial data (RX Burst mode)

Serial Latch enable (RX Burst mode)

TX power enable TXP


```
Name =Active Channel1
late =13.12.00
YScale = 500 mV/Div
Y Scale = 500 mV/D
YAt50% = 1,390V
XAB% =.600 啋
Maximum= 2,811V
Minimumm= 68,91 mV
```

Serial clock (RX Burst mode)

TX power control TXC

TX_IN phase /Quadrature phase ($0 / 180^{\circ}$)

$.60 \mu \mathrm{~s} \quad 100 \mu \mathrm{~s} / \mathrm{Div}$

FREQUENCY LIST

Channel	$\left\lvert\, \begin{aligned} & \mathrm{TX} \\ & \mathrm{MHz} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{RX} \\ & \mathrm{MHz} \end{aligned}\right.$	$\begin{aligned} & \mathrm{VCO}-\mathrm{TX} \\ & \mathrm{MHz} \end{aligned}$	VCO VC at C603 VOLT	$\begin{aligned} & \mathrm{VCO}-\mathrm{RX} \\ & \mathrm{MHz} \end{aligned}$	VCO VC at C603 VOLT
1	890,2	935,2	3560,8	1,7	3740,8	2,81
38	897,6	942,6				
60	902	947	3608	2,01	3788	3
124	914,8	959,8	3659,2	2,34	3839,2	3,2
512	1710,2	1805,2	3420,4	0,84	3610,4	2,03
700	1747,8	1842,8	3495,6	1,3	3685,6	2,36
885	1784,8	1879,8	3569,6	1,77	3759,6	2,66
975	880,2	925,2	3520,8	1,46	3700,8	2,66
976	880,4	925,4	3521,6		3701,6	
977	880,6	925,6	3522,4		3702,4	
978	880,8	925,8	3523,2		3703,2	
979	881	926	3524		3704	
980	881,2	926,2	3524,8		3704,8	
981	881,4	926,4	3525,6		3705,6	
982	881,6	926,6	3526,4		3706,4	
983	881,8	926,8	3527,2		3707,2	
984	882	927	3528		3708	
985	882,2	927,2	3528,8	1,51	3708,8	2,69
986	882,4	927,4	3529,6		3709,6	
987	882,6	927,6	3530,4		3710,4	
988	882,8	927,8	3531,2		3711,2	
989	883	928	3532		3712	
990	883,2	928,2	3532,8		3712,8	
991	883,4	928,4	3533,6		3713,6	
992	883,6	928,6	3534,4		3714,4	
993	883,8	928,8	3535,2		3715,2	
994	884	929	3536		3716	
995	884,2	929,2	3536,8	1,56	3716,8	2,72
996	884,4	929,4	3537,6		3717,6	
997	884,6	929,6	3538,4		3718,4	
998	884,8	929,8	3539,2		3719,2	
999	885	930	3540		3720	
1000	885,2	930,2	3540,8		3720,8	
1001	885,4	930,4	3541,6		3721,6	
1002	885,6	930,6	3542,4		3722,4	
1003	885,8	930,8	3543,2		3723,2	
1004	886	931	3544		3724	
1005	886,2	931,2	3544,8	1,61	3724,8	2,75
1006	886,4	931,4	3545,6		3725,6	
1007	886,6	931,6	3546,4		3726,4	
1008	886,8	931,8	3547,2		3727,2	
1009	887	932	3548		3728	
1010	887,2	932,2	3548,8		3728,8	
1011	887,4	932,4	3549,6		3729,6	
1012	887,6	932,6	3550,4		3730,4	
1013	887,8	932,8	3551,2		3731,2	
1014	888	933	3552		3732	
1015	888,2	933,2	3552,8	1,66	3732,8	2,78
1016	888,4	933,4	3553,6		3733,6	
1017	888,6	933,6	3554,4		3734,4	
1018	888,8	933,8	3555,2		3735,2	
1019	889	934	3556		3736	
1020	889,2	934,2	3556,8		3736,8	
1021	889,4	934,4	3557,6		3737,6	
1022	889,6	934,6	3558,4		3738,4	
1023	889,8	934,8	3559,2	1,7	3739,2	2,81
0	890	935	3560		3740	

Special information for NHM-3

This phone is build so that it can withstand a fall of 3 metres height without harmful effects - what certainly does not mean that you should test this feature on purpose.
Further more the phone endures drops into water of 0.5 metres depth up to 1 minute at a water temperature of not more than $50^{\circ} \mathrm{C}$. Therefore the speaker, buzzer and microphone are sealed. Take care not to destroy these seals if you have to change one of the above mentioned item, don't even touch the seals!
To ensure water resistance, covers with gaskets must not be used more than three times after tightening the screws. Check always appearance of gasket around systemconnector and battery cover, change parts in case of doubt! It is absolutly necessary to use always new screws to assemble the phone, because gaskets around screws are surely damaged after tightening them! Order / torque of tightening screws: middle screws at 12 Ncm , top screws at 25 Ncm and then bottom screws at a torque of 25 Ncm .

Note that accessories do not fulfill the same tough specifications as the phone is made for. Do not connect any electrical item (eg. charger, carkit) to the phone if it is still damp!

The usage of NPE-3 Repair-Hints for NHM-3 phones is possible without any problems.

Schematics of both phones differ only in few points (eg. varistors in Xmic-line, some more components around LNA...), and almost all itemcodes are the same.
Because of different systemmodul-forms you have to use MJS-23 Jig with XRC-3 Rf-cable for testing and adjustment. If you have to make energy management calibration (eg. after changing Ccont or any part of the charging circuit), be sure that you are using dll 311.04.00 or later, else the tuning of battery size won't work and you will get the following failure message:

One of the most conspicuous differences between NPE-3 and NHM-3 is the systemconnector, which is connected via flexfoil to Pcb. Further more a batteryconnector similar to the one in NSM-2/3 is used. The Simcard-holder is combined with the shielding of the baseband as well as the antenna is one part with the shielding of the poweramplifier. The RFconnector is constructed flexible, so that a fall does not result in torn off traces.
If it is necessary to change any item with help of a soldering machine (eg $\mu \mathrm{BGA}$-components, shieldings, poweramplifier...), you have to remove the display assy first, which is connected to PCB with a flexfoil. This can be done easily with help of a Metcal Soldering Station MX500 equipped with a soldering tip SMTC 162.
Hot air should not be used to desolder anything ever since using Pcb with microvias, which will crack rapidly if exposed to too high temperature!

Service ©t Analysis Center Europe SACE CC Training Group

To remove the flexfoil release clips of display assy first and turn it around, so that you have access to the soldering points of the foil. Now you can desolder the flexfoil easily.

Before soldering a new display (do not use the old one!) clean careful the soldering points. Add few new solder to the pads and enclose only a little bit of flux.
Bend the flexfoil a little bit at the perforation, so that it is easier to hold the display in correct position. Do not touch the contacts of the flexfoil with bare fingers!

Heat up the soldering points for approximately 10 seconds. Check connection visually (especially at the top of the flex for shorts to ground) and clip display on Pcb. Never bend the flexfoil for more than 90° !

CHANGE HISTORY

Originator	Status	Version	Date	Comment
CC-Training-	Draft	0.1	24.01 .2001	First draft version for the repair group
Group				
CC-Training- Group CC--Training- Group	Approved	1.0	06.02 .2001	First approved version
		1.2	09.03 .2001	Display information added

